Weak Forms of Bioperation-Preopen Sets

Dr. S. Kousalya Devi¹ and P.Komalavalli²

¹Principal, Government Arts Colleges, Kulithalai, TamilNadu, India ²Assistant professor, Department of mathematics, Thanthai Hans Roever College,Perambalur, TamilNadu, India Email: rVishnu21@gmail.com¹ and komalavallipitchaipillai@gmail.com²

Abstract: In this paper we introduce and study the notions minimal $[\gamma, \gamma']$ -preclosed sets and maximal $[\gamma, \gamma']$ -preopen sets in a topological space (X, τ) .

Keywords: minimal $[\gamma, \gamma']$ -preclosed sets and maximal $[\gamma, \gamma']$ -preopen sets.

1. INTRODUCTION

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms etc.by utilizing generalized open sets. Kasahara [1] defined the concept of an operation on topological spaces. Maki and Noiri [3] introduced the notions of $\tau_{[\gamma,\gamma']}$, which is the collection of all $[\gamma,\gamma']$ -open sets in a topological space. In this paper we introduce and study the notions (X,τ) minimal $[\gamma,\gamma']$ -preclosed sets and maximal $[\gamma,\gamma']$ -preopen sets in a topological space (X,τ) .

2. PREILIMINARIES

The closure and interior of a subset A of (X, τ) are denoted by Cl(A) and Int(A), respectively.

Definition 2.1

[1] Let (X, τ) be a topological space. An operation γ on the topology τ is function from τ on to power set P(X) of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of τ at V. It is denoted by $\gamma: \tau \to P(X)$.

Definition 2.2

[3] A topological space (X, τ) equipped with two operations namely γ and γ' defined on τ is called a bioperation-topological space and it is denoted by $(X, \tau, \gamma, \gamma')$.

Definition 2.3

A subset A of a topological space (X, τ) is said to be $[\gamma, \gamma']$ -open set is [3] if for each $x \in A$ there exist open neighbourhoods U and V of x such that $U^{\gamma} \cap V^{\gamma'} \subset A$. The complement of a $[\gamma, \gamma']$ -open set is called a $[\gamma, \gamma']$ -closed set. Also $\tau_{[\gamma, \gamma']}$ denotes set of all $[\gamma, \gamma']$ -open sets in (X, τ) .

Definition 2.4

[3] For a subset A of (X, τ) , $\tau_{[\gamma, \gamma']}$ -Cl(A) denotes the intersection of all $[\gamma, \gamma']$ -closed sets containing A, that is $\tau_{[\gamma, \gamma']} - Cl(A) = \bigcap \{F : A \subset F, X \setminus F \in \tau_{[\gamma, \gamma']} \}.$

Definition 2.5

Let A be any subset of X. The $\tau_{[\gamma,\gamma']}$ -Int(A) is defined as $\tau_{[\gamma,\gamma']} - Int(A) = \bigcup \{U : U \text{ is a} [\gamma,\gamma'] \text{ open set and } U \subset A \}$

Definition 2.6

A subset A of a topological space (X, τ) is said to be $[\gamma, \gamma']$ -preopen [2] if

 $A \subset \tau_{[\gamma,\gamma']} - Int(\tau_{[\gamma,\gamma']} - Cl(A)).$

3. MAXIMAL AND MINIMAL SETS VIA BIOPERATION-SEMIOPEN SETS

In this section, we introduce and study minimal $[\gamma, \gamma']$ -preclosed sets and maximal $[\gamma, \gamma']$ -preopen sets in a bioperation-topological space $(X, \tau, \gamma, \gamma')$.

Definition 3.1

A proper nonempty $[\gamma, \gamma']$ -preclosed subset F of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ is said to be a minimal $[\gamma, \gamma']$ -preclosed set if any $[\gamma, \gamma']$ -preclosed set contained in F is ϕ or F.

Definition 3.2

A proper nonempty $[\gamma, \gamma']$ -preopen U of a bioperation-topological space $(X, \tau, \gamma, \gamma')$

is said to be a maximal $[\gamma, \gamma']$ -preopen set if any $[\gamma, \gamma']$ -preopen set containing U is either X or U.

The following theorem shows the relation between minimal $[\gamma, \gamma']$ -preclosed sets and maximal $[\gamma, \gamma']$ -preopen sets

Theorem 3.3. A proper nonempty subset U of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ is a maximal $[\gamma, \gamma']$ -preopen if and only if $X \setminus U$ is minimal $[\gamma, \gamma']$ -preclosed.

Proof. Let U be a maximal $[\gamma, \gamma']$ -preopen set. Suppose $X \setminus U$ is not minimal $[\gamma, \gamma']$ -preclosed set. Then there exists a $[\gamma, \gamma']$ -preclosed set $V \neq X \setminus U$ such that $\phi \neq V \subset X \setminus U$. That is $U \subset X \setminus U$ and $X \setminus V$ is a $[\gamma, \gamma']$ -preopen set, which is a contradiction for U is a minimal $[\gamma, \gamma']$ preclosed set. Conversely, let $X \setminus U$ be a minimal $[\gamma, \gamma']$ -preclosed set. Suppose U is not a maximal $[\gamma, \gamma']$ -preopen set. Then there exists a $[\gamma, \gamma']$ preopen set $E \neq U$ such that $U \subset E \neq X$. That is $\phi \neq X \setminus E \subset X \setminus U$ and $X \setminus E$ is a $[\gamma, \gamma']$ preclosed set, which is a contradiction for $X \setminus U$ is a minimal $[\gamma, \gamma']$ -preclosed set. Therefore, U is a maximal $[\gamma, \gamma']$ -preclosed set.

Lemma 3.4. For the subsets U and V be any two subsets of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ we have the following:

- (1) If U is minimal $[\gamma, \gamma']$ -preclosed and V a $[\gamma, \gamma']$ -preclosed set, then $U \cap V = \phi$ or $U \subset V$.
- (2) If U and V are minimal $[\gamma, \gamma']$ -preclosed sets, then $U \cap V = \phi$ or U = V.

Proof. (1). If $U \cap V \neq \phi$, then there is nothing to prove. If $U \cap V \neq \phi$, then $U \cap V \subset U$. Since U is a minimal $[\gamma, \gamma']$ -preclosed set, $U \cap V = U$. Hence $U \subset V$. (2). If $U \cap V \neq \phi$, then $U \subset V$ and $V \subset U$ by (1). Hence U = V.

Theorem 3.5. Let U be a minimal $[\gamma, \gamma']$ -preclosed subset of a bioperation-topological space $(X, \tau, \gamma, \gamma')$. If $x \in U$, then $U \subset W$ for some $[\gamma, \gamma']$ -preclosed set W containing x. **Proof.** Let $x \in U$ and W be a $[\gamma, \gamma']$ -preclosed set such that $x \in G$. Then $U \cap W \neq \phi$. By Lemma 3.4(1), $U \subset W$.

Theorem 3.6. Let U be a minimal $[\gamma, \gamma']$ -preclosed subset of a bioperation-topological space $(X, \tau, \gamma, \gamma')$, Then $U = \bigcap \{W : W \in [\gamma, \gamma'] - SC(X, x)\}$.

Proof. By Theorem 3.5 and U is a $[\gamma, \gamma']$ preclosed set containing x, we have $U \subset \bigcap \{W : W \in [\gamma, \gamma'] - SC(X, x)\}$. Next let, $x \in \bigcap \{W : W \in [\gamma, \gamma'] - SC(X, x)\}$. This imples that , $x \in W$ for all $[\gamma, \gamma']$ -preclosed set W. As U is $[\gamma, \gamma']$ -preclosed, $x \in U$; hence $\bigcap \{W : W \in [\gamma, \gamma'] - SC(X, x)\} = U$.

Theorem 3.7. Let U be a nonempty $[\gamma, \gamma']$ -preclosed subset of a bioperation-topological space $(X, \tau, \gamma, \gamma')$. Then the following statements are equivalent:

- (1) U is a minimal $[\gamma, \gamma']$ -preclosed set.
- (2) $U \subset [\gamma, \gamma'] pCl(S)$ for any nonempty subset S of U.
- (3) $[\gamma, \gamma'] pCl(U) = [\gamma, \gamma'] pCl(S)$ for any nonempty subset S of U.

Proof. (1) \Rightarrow (2): Let $x \in U$; U be a minimal $[\gamma, \gamma']$ -preclosed set and $S(\neq \phi) \subset U$. By Theorem 3.5, for any $[\gamma, \gamma']$ -preclosed set W containing x, $S \subset U \subset W$ gives $S \subset W$. Now $S = S \cap U \subset S \cap W$. Since $S \neq \phi, S \cap W \neq \phi$. Since W is any $[\gamma, \gamma']$ -preclosed set containing x, by Theorem 3.5, $x \in [\gamma, \gamma'] - pCl(S)$. That is, $x \in U \Rightarrow x \in [\gamma, \gamma'] - pCl(S)$. Hence $U \subset [\gamma, \gamma'] - pCl(S)$ for any nonempty subset S of U. (2) \Rightarrow (3): Let S be a nonempty subset of U. Then $[\gamma, \gamma'] - pCl(S) \subset [\gamma, \gamma'] - pCl(U)$. By (2), $[\gamma, \gamma'] - pCl(U) \subset [\gamma, \gamma'] - pCl(S)$.

That is, $[\gamma, \gamma'] - pCl(U) \subset [\gamma, \gamma'] - pCl(S)$. We have $[\gamma, \gamma'] - pCl(U) = [\gamma, \gamma'] - pCl(S)$ for any nonempty subset S of U.

(3) \Rightarrow (1): Suppose U is not a minimal $[\gamma, \gamma']$ preclosed set. Than there exists a nonempty $[\gamma, \gamma']$ preclosed set V such that $V \subset U$ and $V \neq U$. Now, there exists an element a in U such that $a \notin V$. That

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018 E-ISSN: 2321-9637 Available online at www.ijrat.org

is,

 $[\gamma, \gamma'] - pCl(\{a\}) \subset [\gamma, \gamma'] - pCl(X \setminus V) = X \setminus V,$ as X\V is $[\gamma, \gamma']$ - preclosed in X. It follows that $[\gamma, \gamma'] - pCl(\{a\}) \neq [\gamma, \gamma'] - pCl(U)$. This is a contradiction for $[\gamma, \gamma'] - pCl(\{a\}) = [\gamma, \gamma'] - pCl(U)$ for any $\{a\} (\neq \phi) \subset U$. Therefore, U is a minimal $[\gamma, \gamma']$ preclosed set.

Theorem 3.8. If V is a nonempty finite $[\gamma, \gamma']$ preclosed subset of a bioperation-topological space $(X, \tau, \gamma, \gamma')$, then there exists at least one (finite) minimal $[\gamma, \gamma']$ -preclosed set U such that $U \subset V$.

Proof. If V is a minimal $[\gamma, \gamma']$ -preclosed set, we may set U=V. If V is not a minimal $[\gamma, \gamma']$ -preclosed set, then there exists a (finite) $[\gamma, \gamma']$ -preclosed set V₁ such that $\phi = V_1 \subset V$. If V₁ is a minimal $[\gamma, \gamma']$ preclosed set, we may U=V₁. If V₁ is not a minimal $[\gamma, \gamma']$ -preclosed set, then there exists a (finite) $[\gamma, \gamma']$ -preclosed set V₂ such that $\phi = V_2 \subset V_1$. Continuing this process, we have a sequence of $[\gamma, \gamma']$ -preclosed sets

 $V \supset V_1 \supset V_2 \supset V_3 \supset \dots \supset V_k \supset \dots$ Since V is a finite set, this process repeats only finitely many times and finally we get a minimal $[\gamma, \gamma']$ -preclosed set U=V_n for some positive integer n.

Theorem 3.9. Let U and U_{α} be minimal $[\gamma, \gamma']$ preclosed subsets of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ for any element $\alpha \in \Delta$ If $U \subset \bigcup_{\alpha \in \Delta} U_{\alpha}$, then there exists an element $\alpha \in \Delta$ such that

then there exists an element $\alpha \in \Delta$ such that $U = U_{\alpha}$.

Proof. Let $U \subset \bigcup_{\alpha \in \Delta} U_{\alpha} \cdot \text{Then } U \cap (\bigcup_{\alpha \in \Delta} U_{\alpha}) = U \cdot \text{That is } \bigcup_{\alpha \in \Delta} (U \cap U_{\alpha}) = U \cdot \text{Also by lemma3.4 (2),}$ $U \cap U_{\alpha} = \phi \text{ or } U = U_{\alpha} \text{ for any } \alpha \in \Delta \cdot \text{It follows that there exists an element } \alpha \in \Delta \text{ such that } U = U_{\alpha}.$

Theorem 3.10. Let U and U_{α} be minimal $[\gamma, \gamma']$ -preclosed subsets of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ for any $\alpha \in \Delta$ If $U \neq U_{\alpha}$ for any

$$\alpha \in \Delta$$
, then $\left(\bigcup_{\alpha \in \Delta} U_{\alpha}\right) \cap U = \phi$

Proof. Suppose that $\left(\bigcup_{\alpha \in \Delta} U_{\alpha}\right) \cap U = \phi$. Then there exists an element $\alpha \in \Delta$ such that $U \cap U_{\alpha} = \phi$. By Lemma 3.4 (2), we have $U = U_{\alpha}$, Which contradicts the fact $U \neq U_{\alpha}$ for any $\alpha \in \Delta$. Hence $\left(\bigcup_{\alpha \in \Delta} U_{\alpha}\right) \cap U = \phi$.

Theorem 3.11. Let A and B be any two subsets of a bioperation-topological space $(X, \tau, \gamma, \gamma')$. Then we have the following:

- (1) If A is maximal $[\gamma, \gamma']$ -preopen set and B a $[\gamma, \gamma']$ -preopen set, then $A \cup B = X$ or $B \subset A$.
- (2) Let A and B are maximal $[\gamma, \gamma']$ preopen set, then $A \bigcup B = X$ or A = B.

Proof. (1). If $A \cup B = X$, then there is nothing to prove. If $A \cup B \neq X$, then $A \cup B$ is a $[\gamma, \gamma']$ preopen set such that $A \subset A \cup B$. Then $A \cup B = A$. Hence $B \subset A$.

(2). If $A \cup B \neq X$, then $A \cup B$ is a $[\gamma, \gamma']$ preopen set such that A, $B \subset A \cup B$, that is, $A \cup B = A$ and $A \cup B = B$. Hence A = B.

Theorem 3.12. Let F be a maximal $[\gamma, \gamma']$ preopen subsets of a bioperation-topological space $(X, \tau, \gamma, \gamma')$. If $x \in F$, then $S \subset F$ for some $[\gamma, \gamma']$ -preopen set S containing x.

Proof. Similar to the proof of Theorem 3.5.

Theorem 3.13. Let A,B and C be three $[\gamma, \gamma']$ preopen sets of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ such that $A \neq B$. If $A \cap B \subset C$, then either A = C or B = C.

Proof. If A = C, then there is nothing to prove. If $A \neq C$, then we have to prove B=C.

Now $B \cap C = B \cap (C \cap X)$ $= B \cap (C \cap (A \cup B))$ (by Theorem 3.11 (2)) $= B \cap ((C \cap A) \cup (C \cap B))$ $= (B \cap C \cap A) \cup (B \cap C)$ $= (A \cap B) \cup (C \cap B)$ $= (A \cap C) \cap B$

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018 E-ISSN: 2321-9637

Available online at www.ijrat.org

 $= X \cap B = B \text{ (Since A and C are maximal} \\ [\gamma, \gamma'] \text{-preopen set by Theorem 3.11 (2),} \\ A \cup C = X \text{).} \\ \text{That is , } B \cap C = B \Longrightarrow B \subset C \text{ . Since B and C are maximal} \\ [\gamma, \gamma'] \text{-preopen sets, we have } B = C \text{ .} \\ \text{Hence } B = C \\$

Theorem 3.14. Let $(X, \tau, \gamma, \gamma')$ be a bioperationtopological space. If A, B and C are maximal $[\gamma, \gamma']$ preopen sets which are different from each other, then $(A \cap B) \not\subseteq (A \cap C)$. **Proof.** Let $A \cap B \subset A \cap C$. Then

 $(A \cap B) \cup (C \cap B) \subset (A \cap C) \cup (C \cap B)$. That is, $(A \cap C) \cap B \subset C \cap (A \cup B)$. By Theorem 3.11 (2), $A \cup C = X = A \cup B$. Hence $X \cap B \subset C \cap X \Longrightarrow B \subset C$. Thus from the definition of maximal $[\gamma, \gamma']$ -preopen sets, we have B = C, which is a contradiction to the fact that A,B and C are different to each other. Therefore, $(A \cap B) \not\subseteq (A \cap C)$.

Theorem 3.15. Let $(X, \tau, \gamma, \gamma')$ be a bioperationtopological space. If F is a maximal $[\gamma, \gamma']$ -preopen set and x be an element of F, then $F = \bigcup \{S : S \text{ is an}$ $[\gamma, \gamma']$ -preopen set E such that $F \bigcup S \neq X \}$.

Proof. Similar to the proof of Theorem 3.6.

Theorem 3.16. Let $(X, \tau, \gamma, \gamma')$ be a bioperationtopological space. If *F* is proper nonempty cofinite $[\gamma, \gamma']$ -preopen set, then there exists(cofinite) maximal $[\gamma, \gamma']$ -preopen set *E* such that $F \subset E$.

Proof. If F is a maximal $[\gamma, \gamma']$ -preopen set, we may set E=F. If F is not a maximal $[\gamma, \gamma']$ -preopen set, then there exists a (cofinite) $[\gamma, \gamma']$ -preopen set F₁ such that $F \subset F_1 \neq X$. If F₁ is a maximal $[\gamma, \gamma']$ preopen set, we may set E=F₁. If F₁ is not a maximal $[\gamma, \gamma']$ -preopen set, then there exists a (cofinite) $[\gamma, \gamma']$ -preopen set $F_2 \neq X$ such that $F \subset F_1 \subset F_2 (\neq X)$. Continuing this process, we have a sequence of $[\gamma, \gamma']$ -preopen sets such that $F \subset F_1 \subset F_2 \subset \dots \subset F_k \subset \dots$ Since F is a cofinite set, this process repeats only finitely many times and finally we get a maximal $[\gamma, \gamma']$ -preopen set E = F. **Theorem 3.17.** Let $(X, \tau, \gamma, \gamma')$ be a

bioperation-topological space. Then we have the following:

- (1) Let A be a maximal $[\gamma, \gamma']$ -preopen set and $x \in X \setminus A$. Then $X \setminus A \subset B$ for any $[\gamma, \gamma']$ -preopen set B containing x.
- (2) Let A be a maximal $[\gamma, \gamma']$ -preopen set. Then either of the following (i) or (ii) holds: (i) For each $x \in X \setminus A$ and
 - (ii) $each [\gamma, \gamma']$ -preopen set B containing x, B=X. There exists a $[\gamma, \gamma']$ -

preopen set B such that $X \setminus A \subset B$

- (3) Let A be a maximal [γ, γ'] -preopen set. Then either of the following (i) or (ii) holds:
 - (i) For each $x \in X \setminus A$ and each $[\gamma, \gamma']$ -preopen set B containing $x, X \setminus A \subset B$. (ii) There exists a $[\gamma, \gamma']$ preopen set B such that $X \setminus A = B$.

Proof. (1). Since $x \in X \setminus A$, we have $B \not\subseteq A$ for any $[\gamma, \gamma']$ -preopen set B containing x. Then by Theorem 3.11 (1), $A \cup B = X \Longrightarrow X \setminus A \subset B$.

(2). If (i) holds, we are done. Let (i) do not hold. Then there exists an element $x \in X \setminus A$ and a $[\gamma, \gamma']$ -preopen set B containing x such that $B \subset X$. Then by Theorem 3.11 (1), $A \bigcup B = X$ or $B \subset A$. But $B \not\subseteq A \Rightarrow A \bigcup B = X \Rightarrow X \setminus A \subset B$.

(3). If (ii) holds, we are done. Let (ii) do not hold. Then (by (i)) for each $x \in X \setminus A$ and each $[\gamma, \gamma']$ -preopen set B containing x, $X \setminus A \subset B$. Hence by assumption $X \setminus A \subset B$.

Theorem 3.18. Let A be a maximal $[\gamma, \gamma']$ -preopen sets in a bioperation-topological space $(X, \tau, \gamma, \gamma')$. Then either $[\gamma, \gamma'] - pCl(A) = X$ or $[\gamma, \gamma'] - pCl(A) = A$.

International Journal of Research in Advent Technology, Vol.6, No.10, October 2018 E-ISSN: 2321-9637 Available online at www.ijrat.org

Proof. Since A is maximal $[\gamma, \gamma']$ -preopen set, only the following cases (i) and (ii) occur by Theorem 3.17 (3).

(i) For each $x \in X$ and $x \in X \setminus A$ and each $[\gamma, \gamma']$ -preopen set B containing x, we have, $X \setminus A \subset B$: Let $x \in X \setminus A$ and B be any $[\gamma, \gamma']$ -preopen set B containing x. Since $X \setminus A \neq B$, we have $B \cap A \neq \phi$ and hence $X \setminus A \subset [\gamma, \gamma'] - pCl(A)$. Since $X = A \cup (X \setminus A)$ $\subset A \cup [\gamma, \gamma'] - pCl(A) = [\gamma, \gamma'] - pCl(A) \subset X$, $X = [\gamma, \gamma'] - pCl(A)$. There exists a $[\gamma, \gamma']$ -preopen set B such that

There exists a $[\gamma, \gamma']$ proopen set B such that $X \setminus A = B(\neq X)$: Since $X \setminus A = B$, a $[\gamma, \gamma']$ preopen set, A is a $[\gamma, \gamma']$ -preclosed set $\Rightarrow [\gamma, \gamma'] - pCl(A)$.

Theorem 3.19. Let A be a maximal $[\gamma, \gamma']$ -preopen sets in a bioperation-topological space $(X, \tau, \gamma, \gamma')$. Then either $[\gamma, \gamma'] - pInt(X \setminus A) = X \setminus A$ or $[\gamma, \gamma'] - pInt(X \setminus A) = \phi$.

Proof. By Theorem 3.18, we have $[\gamma, \gamma'] - pCl(A) = A \text{ or } [\gamma, \gamma'] - pCl(A) = X$. That is $[\gamma, \gamma'] - pInt(X \setminus A) = X \setminus A \text{ or}$ $[\gamma, \gamma'] - pInt(X \setminus A) = \phi$.

Theorem 3.20. Let A be a maximal $[\gamma, \gamma']$ -preopen sets and B be a nonempty subset of X\A in a bioperation-topological space $(X, \tau, \gamma, \gamma')$. Then $[\gamma, \gamma'] - pCl(B) = X \setminus A$.

Proof. Since $\phi \neq B \subset X \setminus A, W \cap B \neq \phi$ for any element $x \in X \setminus A$ and any $[\gamma, \gamma']$ -preopen set W containing x, by Theorem 3.17 (1). Thus, $X \setminus A \subset [\gamma, \gamma'] - pCl(B)$. Since $X \setminus A$ is $[\gamma, \gamma']$ -preclosed set and $B \subset X \setminus A$, we have $[\gamma, \gamma'] - pCl(B) \subset X \setminus A$.

Corollary 3.21. Let A be a maximal $[\gamma, \gamma']$ -preopen sets in a bioperation-topological space $(X, \tau, \gamma, \gamma')$ and $A \subset B$. Then $[\gamma, \gamma'] - pCl(B) = X$. **Proof.** Since $A \subseteq B \subseteq X$, there exist a nonempty subset F of $X \setminus A$ such that $B = A \bigcup F$. Hence we have, $[\gamma, \gamma'] - pCl(B) = [\gamma, \gamma'] - pCl(A \bigcup F)$ $\supset [\gamma, \gamma'] - pCl(A) \bigcup [\gamma, \gamma'] - pCl(F)$ $\supset A \bigcup (X \setminus A) = X$ (by Theorem 3.18)

Theorem 3.22. Let A be a maximal $[\gamma, \gamma']$ preopen sets in a bioperation-topological space $(X, \tau, \gamma, \gamma')$ and let $X \setminus A$ have at least two elements. Then $[\gamma, \gamma'] - pCl(X \setminus \{a\}) = X$ for any element a of $X \setminus A$.

Proof. As $A \subset X \setminus \{a\}$, we have, by Corollary 3.21, $[\gamma, \gamma'] - pCl(X \setminus \{a\}) = X$.

Theorem 3.23. Let A be a maximal $[\gamma, \gamma']$ preopen set and G be a proper subset of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ with $A \subset G$. Then $[\gamma, \gamma'] - pInt(G) = A$.

Proof. If G = A, then $[\gamma, \gamma'] - pInt(G) = [\gamma, \gamma'] - pInt(A) = A \cdot \text{If}$ $G \neq A$, then we have $A \subset G$. Thus $A \subset [\gamma, \gamma'] - pInt(G)$. Since A is maximal $[\gamma, \gamma'] - pInt(G) \subset A$. Hence $[\gamma, \gamma'] - pInt(G) = A$.

REFERENCES.

- [1] C. Carpintero, N. Rajesh and E. Rosas. "On $[\gamma, \gamma']$ -preopen sets". Demon.Math., XLVI (3), pages 617-629,(2013).
- [2] S. Kasahara. "Operation-compact spaces".Math. Japonica24, pages 97-105, 1979.
- [3] H. Maki and T. Noiri. "Bioperations and some separation axioms". Math. Japonicae53(1), pages165-180, 2001.